Discussion. Final atomic coordinates are given in Table 1.* The molecular structure and atom numbering are shown in Fig. 1. Interatomic distances, valence angles and hydrogen-bond geometry are given in Table 2. The 3-amino-3-phosphonopropionic acid (α-AspP) exists as a zwitterion with the α-amino N protonated and the phosphonic acid group negatively charged; the $\mathrm{P}-\mathrm{O}$ bond lengths, 1.509 (3) and 1.500 (3) \AA, indicate that the charge is equally distributed between $O(2)$ and $O(3)$ - as in β-AspP (Sawka-Dobrowolska, Głowiak, Siatecki \& Soroka, 1985). There is extensive hydrogen bonding,

[^0]in which all potential donor and acceptor atoms participate.

This work was supported by the Polish Ministry of Science and Higher Education (project RP.II.10).

References

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kafarski, P. \& Mastalerz, P. (1984). Beitr. Wirkst. Forsch. 21, 1-39.
Kowalik, J., Sawka-Dobrowolska, W. \& Głowiak, T. (1984). J. Chem. Soc. Chem. Commun. pp. 446-447.

Sawka-Dobrowolska, W., Głowiak, T., Siatecki, Z. \& Soroka, M. (1985). Acta Cryst. C41, 453-456.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.

Acta Cryst. (1992). C48, 288-290

Structure of 12,14-Dihydro-2H-dibenzo[d,i][1,3,7,6,8]dioxathiadiazecine

By T. A. Olszak and M. J. Grabowski
Department of Crystallography, Institute of Chemistry, University of Łódź, Nowotki 18, 91-416 Łódź, Poland
R. Glinka
Institute of Chemistry and Technology of Drugs, School of Medicine, Narutowicza 120a, 90-145 Łódź, Poland
and P. Sabatino
Dipartimento di Chimica 'G. Ciamician', Universita di Bologna, Via Selmi 2, 40126 Bologna, Italy

(Received 8 January 1991; accepted 25 June 1991)

Abstract

C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, M_{r}=292.309\), monoclinic, $P 2_{1} / n, a=4.907$ (2), $b=13.797$ (6), $c=19.474$ (8) \AA, $\beta=97.20(3)^{\circ}, \quad V=1308.02(95) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.4843, D_{m}=1.477 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA$, $\mu=22.24 \mathrm{~cm}^{-1}, F(000)=608$, room temperature, final $R=0.0494$ for 2121 reflections with $I>3 \sigma(I)$. The ten-membered ring is in a chair conformation. There are two intramolecular and one intermolecular hydrogen bonds of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type. The molecules form chains in the [100] direction.

Introduction. Bearing in mind that sulfamides find wide application in medicine we tried to obtain and study a new class of related compounds, cyclic sulf-
amides. Some methods of obtaining benzo- and dibenzosulfadiazines on the basis of the reaction of aryldiamines with sulfamide, or sulfur chloride have been described (Knollmuller, 1971, 1974). Following these methods we have carried out the synthesis by using an aminoaryl ether, methylenedioxybis(aminobenzene), and sulfamide. We have obtained the title compound (1) and used it for preliminary screening in antibacterial properties. The pharmacological test showed it had comparatively weak antibaterial activity. The formula of (1) has been confirmed by elemental, IR, NMR and MS methods.

This structure determination has been undertaken to give more detailed information about the bond © 1992 International Union of Crystallography

Table 1. Final positional $\left(\times 10^{4}\right)$ and equivalent isotropic thermal $\left(\times 10^{4}\right)$ parameters with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
S1	$1202(1)$	$9670(0)$	$1706(0)$	$423(2)$
O1	$4003(3)$	$9420(1)$	$1907(1)$	$580(6)$
O2	$-489(4)$	$9104(1)$	$1218(1)$	$564(5)$
N1	$-308(4)$	$9664(1)$	$2408(1)$	$429(6)$
N2	$1329(4)$	$10771(1)$	$1400(1)$	$529(6)$
C7	$-2160(9)$	$12373(2)$	$2568(2)$	$766(12)$
O3	$-2357(4)$	$11413(1)$	$2794(1)$	$615(6)$
O4	$-538(4)$	$12415(1)$	$2011(1)$	$699(7)$
C1	$962(5)$	$10157(2)$	$3009(1)$	$477(7)$
C2	$3193(6)$	$9728(2)$	$3413(1)$	$625(9)$
C3	$4361(9)$	$10198(3)$	$4006(2)$	$903(14)$
C4	$3312(10)$	$11078(4)$	$4194(2)$	$1013(17)$
C5	$1109(9)$	$11487(3)$	$3800(2)$	$871(13)$
C6	$-78(6)$	$11040(2)$	$3199(1)$	$575(8)$
C8	$-1940(5)$	$12105(2)$	$1391(1)$	$568(8)$
C9	$-4090(7)$	$12629(2)$	$1047(2)$	$773(12)$
C10	$-5402(7)$	$12323(3)$	$423(2)$	$821(12)$
C11	$-4564(7)$	$11502(3)$	$124(2)$	$781(11)$
C12	$-2373(6)$	$10978(2)$	$449(1)$	$623(8)$
C13	$-1037(4)$	$11271(2)$	$1083(1)$	$493(6)$

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$, and torsion angles $\left({ }^{\circ}\right)$ of the heterocyclic ring with e.s.d.'s in parentheses

S1-O1	1.424 (2)	$\mathrm{Cl}-\mathrm{C} 6$	1.389 (4)
S1-O2	1.416 (2)	C2-C3	1.384 (5)
S1-N1	1.635 (2)	C3-C4	1.386 (7)
S1-N2	1.636 (2)	C4-C5	1.367 (6)
$\mathrm{N} 1-\mathrm{Cl}$	1.428 (3)	C5-C6	1.385 (5)
N2-C13	1.423 (3)	C8-C9	1.381 (4)
C7-03	1.403 (3)	C8-C13	1.395 (4)
C7-04	1.425 (5)	C9-C10	1.369 (5)
O3-C6	1.384 (3)	$\mathrm{C} 10-\mathrm{Cl1}$	1.361 (6)
O4-C8	1.381 (3)	$\mathrm{Cl1}-\mathrm{Cl} 2$	1.382 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.397 (4)	C12-C13	1.384 (3)
$\mathrm{N} 1-\mathrm{Sl}-\mathrm{N} 2$	110.6 (1)	$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	119.1 (3)
$\mathrm{Ol}-\mathrm{Sl} 1-\mathrm{N} 2$	108.3 (1)	O3-C6-C5	122.7 (3)
$\mathrm{O} 2-\mathrm{Sl} 1-\mathrm{N} 1$	105.6 (1)	O3-C6-Cl	118.2 (2)
$\mathrm{Ol}-\mathrm{S} 1-\mathrm{N} 2$	104.2 (1)	O4-C8-C13	118.8 (2)
$\mathrm{Ol}-\mathrm{Sl}-\mathrm{N} 1$	107.0 (1)	O4-C8-C9	121.9 (2)
$\mathrm{O} 1-\mathrm{S1}-\mathrm{O} 2$	121.0 (1)	C9-C8-C13	119.2 (2)
$\mathrm{Sl}-\mathrm{Nl}-\mathrm{Cl}$	119.1 (2)	C8-C9-C10	121.0 (3)
$\mathrm{S} 1-\mathrm{N} 2-\mathrm{Cl} 3$	122.8 (2)	C9--C10-C11	120.2 (4)
O3-C7-O4	110.1 (2)	$\mathrm{Cl0}-\mathrm{Cl1-C12}$	120.0 (4)
C7-O3-C6	116.6 (3)	$\mathrm{C11}-\mathrm{Cl} 2-\mathrm{Cl} 3$	120.7 (3)
C7-O4-C8	112.9 (3)	C8-C13-C12	119.0 (2)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 6$	119.9 (2)	N2-C13-C12	121.0 (2)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	119.4 (2)	$\mathrm{N} 2-\mathrm{Cl} 3-\mathrm{C} 8$	119.9 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	120.7 (2)	C3-C4-C5	120.5 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.0 (3)	C4-C5-C6	120.7 (4)
C2-C3-C4	120.1 (4)		
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{N} 2-\mathrm{Cl} 3$	-71.03 (22)	$\mathrm{N} 2-\mathrm{Sl}-\mathrm{N} 1-\mathrm{Cl}$	-64.88 (21)
$\mathrm{S} 1-\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 8$	115.20 (24)	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 6$	104.99 (26)
$\mathrm{N} 2-\mathrm{Cl} 3-\mathrm{C} 8-\mathrm{O} 4$	$4-1.52$ (36)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 6-\mathrm{O} 3$	0.39 (38)
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{O} 4-\mathrm{C} 7$	-115.25 (29)	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 7$	- 128.56 (29)
C8-O4-C7-O3	76.75 (32)	$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 4$	76.67 (33)

system and the conformation of the heterocyclic ring of the first compound of this new class.

Experimental. Colourless crystals were obtained from ethanol at room temperature. Large needle-shaped
crystal with a specimen size of $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$. D_{m} obtained by flotation. Diffraction data measured on a four-circle KM-4 diffractometer (KUMA Diffraction, Wroclaw, Poland), $\mathrm{Cu} K \alpha$ radiation, graphite monochromatization, $\omega / 0.8 \theta$ scan type. Unit-cell parameters were obtained by least-squares treatment of 25 reflections with $\theta_{\max }=43^{\circ}$. Cu data collected to $\theta_{\text {max }}=75^{\circ}$, total of 5115 non-zero reflections measured, not corrected for absorption, range of h, k and $l: 0$ to $5,-16$ to 16 and -23 to 23 , respectively, standard reflections 244 and 266 monitored every 100 reflections, count variations less than $5 \% .2101$ reflections were considered observed by the criterion $I>3 \sigma(I)$ and used in calculations. Solution by direct methods using SHELX76 (Sheldrick, 1976); H atoms located from difference Fourier map, refinement by full-matrix least-squares procedure on F magnitudes, 230 parameters; anisotropic thermal parameters for non- H atoms and isotropic for H atoms. Refinement to final $R=0.0494, w R=0.0571, \quad S=1.1014 ; w=$ $1 /\left[\sigma^{2}(F)+0.00427 F^{2}\right] . \quad$ Max. \quad shift $/$ e.s.d. $=0.054$, largest peaks on a final difference map 0.413 and $-0.582 \mathrm{e} \AA^{-3}$. Atomic scattering factors from $S H E L X 76$. The geometry of the molecule was calculated by PARST program from CRYSRULER (Rizzoli, Sangermano, Calestani \& Andreetti, 1976).

Discussion. The positional parameters and equivalent values of the anisotropic temperature factors for non-H atoms are given in Table 1,* and bond lengths, bond angles and torsion angles of the heterocyclic ring are given in Table 2. The structure of the molecule with the atom-numbering scheme is shown in Fig. 1.

[^1]

Fig. 1. The structure of the molecule with the atom-numbering scheme.

The ten-membered heterocyclic ring asssumes a distorted chair conformation giving this conformation to the molecule as a whole. The ring is approximately symmetrical with respect to a pseudo-twofold axis through S 1 and C 7 and to a pseudo-mirror plane passing through the middle of bond $\mathrm{C} 1-\mathrm{C} 6$. The rotational symmetry is dominant: the asymmetry parameters (Duax \& Norton, 1975) are $\Delta_{2}=13.8$ and $\Delta_{m}=29.1$. The symmetry distortion mainly results from the large difference of the torsion angles of the pair $\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 6$ and $\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3-$ C7. Two fused benzene rings are nearly planar with the maximum deviations from the least-squares planes 0.009 (4) for C5 and 0.013 (4) \AA for C9. The dihedral angle of benzene-ring planes is $5.13(10)^{\circ}$.
$\mathrm{N} 1-\mathrm{H} 100$ and $\mathrm{N} 2-\mathrm{H} 200$ bonds are intraannular with torsion angles $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 100$ of $-31.3(2.2)$ and $\mathrm{C} 8-\mathrm{C} 13-\mathrm{N} 2-\mathrm{H} 200$ of $-28.6(2.6)^{\circ}$. The shortness of the $\mathrm{N} 1 \cdots \mathrm{O} 3$ and $\mathrm{N} 2 \cdots \mathrm{O} 4$ distances [2.755 (2) and 2.770 (2) \AA, respectively] suggests there are two intramolecular hydrogen bonds, the $\mathrm{N} 1-\mathrm{H} 100 \cdots \mathrm{O} 3$ and $\mathrm{N} 2-\mathrm{H} 200 \cdots \mathrm{O} 4$
angles being 103.5 (2.5) and $95.6(2.4)^{\circ}$, respectively. One of the two N atoms forms an intermolecular hydrogen bond $\mathrm{N} 1-\mathrm{H} 100 \cdots \mathrm{O}$, where O 1 belongs to the molecule related by $x+1, y, z$. The $\mathrm{N} 1 \cdots \mathrm{O} 1$ distance is 2.859 (3) \AA and the $\mathrm{N} 1-\mathrm{H} 100 \cdots \mathrm{O} 1$ angle is $148.1(2.8)^{\circ}$. Thus the crystal structure is built from chains of molecules linked by hydrogen bonds; these chains run in the [100] direction.

This work was supported by project R.P.II. 10 from the Polish Ministry of National Education.

References

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. I. New York: IFI/Plenum.
Knollmuller, M. (1971). Monatsh. Chem. 102, 1055-1064.
Knollmuller, M. (1974). Monatsh. Chem. 105, 114-119.
Rizzoli, C., Sangermano, V., Calestani, G. \& Andreetti, G. D. (1976). CRYSRULER Package. Version 1.2 (Polish version). Univ. degli Studi di Parma, Italy.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of (22S)-3 β-Acetoxy-20-(3-isopropylisoxazolin-5-yl)-4,4,14 α -trimethylpregn-8(9)-ene

By Sergey V. Lindeman,* Mikael S. Alexanyan and Yuri T. Struchiov
Nesmeyanov Institute of Organoelement Compounds, Academy of Sciences of the USSR, 28 Vavilov Str., Moscow B-334, USSR
and Rajesh Kumar Thaper, Irina G. Reshetova and Alexey V. Kamernitzky
Zelinsky Institute of Organic Chemistry, Academy of Sciences of the USSR, 47 Leninskij Prosp., Moscow B-334, USSR

(Received 11 December 1990; accepted 25 June 1991)

Abstract

C}_{32} \mathrm{H}_{51} \mathrm{NO}_{3}, \quad M_{r}=497 \cdot 7\), orthorhombic, $P 2_{12} 2_{1}, \quad a=7.577$ (2), $\quad b=10.510$ (2), $\quad c=$ 35.399 (7) $\AA, \quad V=2819(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.173 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \quad \mu=$ $0.69 \mathrm{~cm}^{-1}, F(000)=1096, T=153 \mathrm{~K}, R=0.0497$ for 2235 observed reflections. The compound investigated is found to be a $(22 S)$-epimer.

Introduction. Steroids having a lanostane skeleton and oxygen function in their side chain at C22 exhibit some useful biological properties (Kamernitzky \& Reshetova, 1977). Isolation of such compounds from natural products and their

[^2]0108-2701/92/020290-03\$03.00
synthesis may be of considerable interest. We have synthesized two isomers [(22R) and (11S)] of 3β -acetoxy-20-(3-isopropylisoxazolin-5-yl)-4,4,14 α-tri-methylpregn-8(9)-ene (1). Biological activity of such steroid derivatives depends on the configuration of the C22 centre. Therefore the determination of chirality at the C 22 atom in one epimer is of primary importance especially taking into account that further transformations proceed without inversion at the C22 atom.

Experimental. The title compound (1) was prepared from 3β-acetoxy-25,26,27-trinorlanosta-8,22-diene (Poyser, Hirtzbach \& Ourisson, 1974; Akhrem, Khripach, Litvinovskaya \& Baranovsky, 1989) via (c) 1992 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and angles involving H atoms, torsion angles, H -atom parameters and the full synthesis of the title compound have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54317 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54397 (15 pp. .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Author to whom correspondence should be addressed.

